你好,游客 登录 注册 搜索
背景:
阅读新闻

CentOS 6.4+Hadoop2.2.0 Spark伪分布式安装

[日期:2016-03-09] 来源:Linux社区  作者:sunflower_cao [字体: ]

Hadoop版本是2.2.0的稳定版本 下载地址
spark版本:spark-0.9.1-bin-hadoop2  下载地址http://spark.apache.org/downloads.html
这里的spark有三个版本:

    For Hadoop 1 (HDP1, CDH3): find an Apache mirror or direct file download
    For CDH4: find an Apache mirror or direct file download
    For Hadoop 2 (HDP2, CDH5): find an Apache mirror or direct file download
我的hadoop版本是hadoop2.2.0的,所以下载的是for hadoop2

关于spark的介绍可以参看http://spark.apache.org/
Apache Spark is a fast and general engine for large-scale data processing.

spark运行时需要scala环境,这里下载最新版本的scala  http://www.scala-lang.org/

scala是一种可伸缩的语言是一种多范式的编程语言,一种类似java的编程,设计初衷是要集成面向对象编程和函数式编程的各种特性。Scala是在JVM上运行,Scala是一种纯粹的面向对象编程语言,而又无缝地结合了命令式和函数式的编程风格

ok 开始配置spark:

我是在hadoop的安装用户下面安装的,所以这里直接编辑/home/hadoop/.bashrc

[hadoop@localhost ~]$ cat .bashrc
# .bashrc

# Source global definitions
if [ -f /etc/bashrc ]; then
. /etc/bashrc
fi

# User specific aliases and functions
export HADOOP_HOME=/home/hadoop/hadoop
export HBASE_HOME=/home/hadoop/hbase
export HIVE_HOME=/home/hadoop/hive
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_HOME=/etc/home/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
export SCALA_HOME=/home/hadoop/scala
export SPARK_HOME=/home/hadoop/spark

export PATH=${PATH}:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin
export CLASSPATH=$CLASSPATH:$HADOOP/lib:$HBASE_HOME/lib

1.scala安装:
将scala解压到hadoop根目录下
ln -ls scala-2.11.0 scala#建立软链接
lrwxrwxrwx.  1 hadoop hadoop        12 May 21 09:15 scala -> scala-2.11.0
drwxrwxr-x.  6 hadoop hadoop      4096 Apr 17 16:10 scala-2.11.0

编辑.bashrc  加入  export SCALA_HOME=/home/hadoop/scala
export PATH=${PATH}:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin
保存 并使环境变量生效  source  .bashrc 
验证安装:
[hadoop@localhost ~]$ scala -version
Scala code runner version 2.11.0 -- Copyright 2002-2013, LAMP/EPFL
能够正常显示版本说明安装成功

2:spark配置:
tar -xzvf  spark-0.9.1-bin-hadoop2.tgz
ln -s spark-0.9.1-bin-hadoop2 spark
然后配置.bashrc 
export SPARK_HOME=/home/hadoop/spark
export PATH=${PATH}:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin

编辑完成source .bashrc 使环境变量生效

spark-env.sh配置:
spark-env.sh是不存在的 需要从 cat spark-env.sh.template >> spark-env.sh 生成

然后编辑spark-env.sh

加入一下内容
export SCALA_HOME=/home/hadoop/scala
export JAVA_HOME=/usr/java/jdk
export SPARK_MASTER=localhost
export SPARK_LOCAL_IP=localhost
export HADOOP_HOME=/home/hadoop/hadoop
export SPARK_HOME=/home/hadoop/spark
export SPARK_LIBARY_PATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$HADOOP_HOME/lib/native
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

保存退出

3.启动spark
跟hadoop的目录结构相似 在spark下面的sbin里边放了启动和关闭的shell文件
-rwxrwxr-x. 1 hadoop hadoop 2504 Mar 27 13:44 slaves.sh
-rwxrwxr-x. 1 hadoop hadoop 1403 Mar 27 13:44 spark-config.sh
-rwxrwxr-x. 1 hadoop hadoop 4503 Mar 27 13:44 spark-daemon.sh
-rwxrwxr-x. 1 hadoop hadoop 1176 Mar 27 13:44 spark-daemons.sh
-rwxrwxr-x. 1 hadoop hadoop  965 Mar 27 13:44 spark-executor
-rwxrwxr-x. 1 hadoop hadoop 1263 Mar 27 13:44 start-all.sh
-rwxrwxr-x. 1 hadoop hadoop 2384 Mar 27 13:44 start-master.sh
-rwxrwxr-x. 1 hadoop hadoop 1520 Mar 27 13:44 start-slave.sh
-rwxrwxr-x. 1 hadoop hadoop 2258 Mar 27 13:44 start-slaves.sh
-rwxrwxr-x. 1 hadoop hadoop 1047 Mar 27 13:44 stop-all.sh
-rwxrwxr-x. 1 hadoop hadoop 1124 Mar 27 13:44 stop-master.sh
-rwxrwxr-x. 1 hadoop hadoop 1427 Mar 27 13:44 stop-slaves.sh
[hadoop@localhost sbin]$ pwd
/home/hadoop/spark/sbin

这里只需要运行start-all就可以了~~~
[hadoop@localhost sbin]$ ./start-all.sh
rsync from localhost
rsync: change_dir "/home/hadoop/spark-0.9.1-bin-hadoop2/sbin/localhost" failed: No such file or directory (2)
rsync error: some files/attrs were not transferred (see previous errors) (code 23) at main.c(1039) [sender=3.0.6]
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-localhost.out
localhost: rsync from localhost
localhost: rsync: change_dir "/home/hadoop/spark-0.9.1-bin-hadoop2/localhost" failed: No such file or directory (2)
localhost: rsync error: some files/attrs were not transferred (see previous errors) (code 23) at main.c(1039) [sender=3.0.6]
localhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-localhost.out

通过jps查看启动是否成功:
[hadoop@localhost sbin]$ jps
4706 Jps
3692 DataNode
3876 SecondaryNameNode
4637 Worker
4137 NodeManager
4517 Master
4026 ResourceManager
3587 NameNode

可以看到有一个Master跟Worker进程 说明启动成功
可以通过http://localhost:8080/查看spark集群状况

4 运行spark自带的程序 
首先需要进入spark下面的bin目录 :
[hadoop@localhost sbin]$ ll ../bin/
total 56
-rw-rw-r--. 1 hadoop hadoop 2601 Mar 27 13:44 compute-classpath.cmd
-rwxrwxr-x. 1 hadoop hadoop 3330 Mar 27 13:44 compute-classpath.sh
-rwxrwxr-x. 1 hadoop hadoop 2070 Mar 27 13:44 pyspark
-rw-rw-r--. 1 hadoop hadoop 1827 Mar 27 13:44 pyspark2.cmd
-rw-rw-r--. 1 hadoop hadoop 1000 Mar 27 13:44 pyspark.cmd
-rwxrwxr-x. 1 hadoop hadoop 3055 Mar 27 13:44 run-example
-rw-rw-r--. 1 hadoop hadoop 2046 Mar 27 13:44 run-example2.cmd
-rw-rw-r--. 1 hadoop hadoop 1012 Mar 27 13:44 run-example.cmd
-rwxrwxr-x. 1 hadoop hadoop 5151 Mar 27 13:44 spark-class
-rwxrwxr-x. 1 hadoop hadoop 3212 Mar 27 13:44 spark-class2.cmd
-rw-rw-r--. 1 hadoop hadoop 1010 Mar 27 13:44 spark-class.cmd
-rwxrwxr-x. 1 hadoop hadoop 3184 Mar 27 13:44 spark-shell
-rwxrwxr-x. 1 hadoop hadoop  941 Mar 27 13:44 spark-shell.cmd

run-example org.apache.spark.examples.SparkLR spark://localhost:7077

run-example org.apache.spark.examples.SparkPi spark://localhost:7077

Hadoop2.5.2 HA高可靠性集群搭建(Hadoop+Zookeeper) http://www.linuxidc.com/Linux/2016-03/128913.htm

Hadoop2.7完全分布式集群搭建以及任务测试   http://www.linuxidc.com/Linux/2016-02/128730.htm

一步步教你Hadoop多节点集群安装配置 http://www.linuxidc.com/Linux/2016-02/128149.htm

更多Hadoop相关信息见Hadoop 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=13

本文永久更新链接地址http://www.linuxidc.com/Linux/2016-03/129064.htm

linux
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数

       

评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款