你好,游客 登录 注册 搜索
背景:
阅读新闻

Python自定义函数基础

[日期:2017-04-06] 来源:Linux社区  作者:itlearninger [字体: ]

1 格式:
    def functionName(参数列表):
                  方法体
例子1:
>>>def greet_user():
        print(“hello”)
>>>greet_user()
hello

 
例子2:
>>>def greet_user(username): #username形参
      print(“hello,”+ username+“!”)
>>>greet_user(“zhangsan”)#zhangsan 实参
hello, zhangsan!

鉴于函数定义中可能包含多个形参,因此在函数调用中也可能包含多个实参。向函数中传递实参的方式很多,可以使用位置实参,这要求实参的顺序和形参的顺序相同;也可以使用关键字形参,其中的每个实参都有变量名和值组成;还可以使用列表和字典。
                                                     
(1)位置实参
        要求实参的顺序和形参的顺序相同
        例子:
       
def describe_pet(animal_type,pet_name):
                  print(“\n I have a”+animal_type+”.”)
                  print(“My ”+animal_type+”’sname is ”+pet_name+”.”)
 describe_pet(‘hamster’,’harry’)

当两个参数的位置交换后,表达的意思就会出现错误。
这种传参方式应该是最好理解的,大部分语言都是这种传参方式。
(2)默认参数
编写函数时,可给每个形参指定默认值。在调用函数中给形参提供了实参时,Python将使用指定实参,否则使用默认值。
123 def describe_pet(pet_name,animal_type=‘dog’):
    print(“\n I have a”+animal_type+”.”)
    print(“My ”+animal_type+”’sname is ”+pet_name+”.”)

注意:在使用默认参数时,在形参列表中必须先列出没有默认值的形参,再列出有默认值的形参。
当然,默认值不一定是字符串,数字等,同时也支持各种序列。
def f(a, L=[]):
    L.append(a)
    return L
 
print(f(1))
print(f(2))
print(f(3))

输出结果为
[1]
[1, 2]
[1, 2, 3]
 
如果你不想调用之间共享的默认设置,你可以这样写
def f(a, L=None):
    if L is None:
        L = []
    L.append(a)
    return L

感觉有点像java中单例模式中的懒汉式,虽然不能这么比。
 
(3)关键字实参
        关键字实参是传递给函数的 名称-值对。你直接在实参中将名称和值关联起来,因此向函数传递实参时不会混淆
def parrot(voltage, state='a stiff', action='voom',type='Norwegian Blue'):
    print("--This parrot wouldn't", action, end=' ')
    print("ifyou put", voltage, "volts through it.")
    print("--Lovely plumage, the", type)
    print("--It's", state, "!")
 
parrot(1000)                                          # 1positional argument
parrot(voltage=1000)                                  # 1 keywordargument
parrot(voltage=1000000,action='VOOOOOM')            # 2 keywordarguments
parrot(action='VOOOOOM',voltage=1000000)            # 2 keywordarguments
parrot('amillion', 'bereft of life', 'jump')        # 3 positional arguments
parrot('athousand', state='pushing up the daisies') # 1 positional, 1 keyword

执行后的结果
>>>
===========RESTART: D:/python/pythonLearning/KeywordArguments.py ===========
-- This parrotwouldn't voom if you put 1000 volts through it.
-- Lovelyplumage, the Norwegian Blue
-- It's a stiff!
-- This parrotwouldn't voom if you put 1000 volts through it.
-- Lovelyplumage, the Norwegian Blue
-- It's a stiff!
-- This parrotwouldn't VOOOOOM if you put 1000000 volts through it.
-- Lovelyplumage, the Norwegian Blue
-- It's a stiff!
-- This parrotwouldn't VOOOOOM if you put 1000000 volts through it.
-- Lovelyplumage, the Norwegian Blue
-- It's a stiff!
-- This parrotwouldn't jump if you put a million volts through it.
-- Lovelyplumage, the Norwegian Blue
-- It's bereftof life !
-- This parrotwouldn't voom if you put a thousand volts through it.
-- Lovelyplumage, the Norwegian Blue
-- It's pushingup the daisies !
 
但是下面的调用方式会报错:
parrot()                    # 必须的参数没有填入
parrot(voltage=5.0, 'dead')  # 关键字传参后面的一定也是关键字传参
parrot(110, voltage=220)    # 同一个参数传了不同的实参
parrot(actor='John Cleese')  # 函数定义中没有这个形参。
关键字实参后面不能再有位置实参。
当必填参数没有时,会报错。
当必填参数以位置实参的方式传递时,默认参数可以按照关键字实参的方式传递,也可以以位置实参的方式传递,而且此时,必填参数一定在默认参数前面。
当必填参数以关键字实参方式传递的时候,默认参数传递的时候也一定是以关键字实参方式传递,而且此时与位置无关。
关键字实参的关键字必须是形参中有的,否则会报错。
(4)任意多数目的参数“*”
最不常使用的选项是指定可以使用任意数量的参数调用的函数。这些参数将被裹在一个元组中。在可变数目的参数之前, 零个或更多的正常参数可能会发生。
def write_multiple_items(file, separator, *args):
  file.write(separator.join(args))

通常情况下,可变参数将在参数列表中的最后(含有默认参数的时候,默认参数在可变参数后面。另外,传入字典参数也在可变参数之后,因为字典参数也是一种可变参数)。
在可变参数后面的参数,只能以关键字实参的方式传递,而不能使用位置实参传递方式。
def concat(*args, sep="/"):
    return sep.join(args)
 
print(concat("earth", "mars", "venus"))
print(concat("earth", "mars", "venus",sep="."))

 

结果为:
>>>
===========RESTART: D:/python/pythonLearning/KeywordArguments.py ===========
earth/mars/venus
earth.mars.venus
(5)需要字典类型的参数“**”
下面例子中**keywords代表传入字典类型的参数,而且*一定要在**之前。
def cheeseshop(kind, *arguments, **keywords):
    print("--Do you have any", kind, "?")
    print("--I'm sorry, we're all out of", kind)
    for arg inarguments:
        print(arg)
  print("-" * 40)
    keys =sorted(keywords.keys())
    for kw in keys:
        print(kw,":", keywords[kw])

 可以这样调用
    cheeseshop("Limburger", "It's very runny, sir.",

          "It's really very, VERY runny, sir.",
          shopkeeper="Michael Palin",
          client="John Cleese",
          sketch="Cheese Shop Sketch")
当然结果如下:
        >>>
===========RESTART: D:/python/pythonLearning/KeywordArguments.py ===========
-- Do you haveany Limburger ?
-- I'm sorry,we're all out of Limburger
It's very runny,sir.
It's reallyvery, VERY runny, sir.
----------------------------------------
client : JohnCleese
shopkeeper :Michael Palin
sketch : CheeseShop Sketch
(6)Unpacking Argument Lists(python3.6帮助文档上用的这个词,必应翻译给的翻译是开箱的参数列表,我感觉应该是参数列表的拆包,不够下面还是用了开箱这个词,大家理解下)
        这是与之前把数据组合成list相反的操作,即把list中的数据进行开箱操作,把里面的数据全部取出来使用,有点不好理解,看个例子吧
 
>>> list(range(3,6))
[3, 4, 5]
>>> args=[3,6]
>>> list(range(*args))
[3, 4, 5]
>>> args=(3,6)
>>> list(range(*args))
[3, 4, 5]

>>>这里把args中的数据进行开箱操作,把里面的数据作为range的参数列表.很显然,这个开箱操作对于元组也是适用的.
 
另外,也可以对字典执行开箱操作,需要的是两个*号即可.
def parrot(voltage, state='a stiff',action='voom'):
  print("-- This parrot wouldn't", action, end=' ')
  print("if you put", voltage, "volts through it.",end=' ')
  print("E's", state, "!")

 
d = {"voltage": "fourmillion", "state": "bleedin' demised","action": "VOOM"}
parrot(**d)
 
结果为:
>>>
=========== RESTART:D:/python/pythonLearning/KeywordArguments.py ===========
-- This parrot wouldn't VOOM if you putfour million volts through it. E's bleedin' demised !
>>>

(7)lambda表达式
  可以使用 lambda 关键字创建小的匿名函数。此函数返回其两个参数的总和        lambda a, b:a + b
Lambda 函数可以用于任何函数对象。他们在语法上限于单个表达式。语义上,他们都只是正常的函数定义的语法糖。嵌套的函数定义类似,lambda 函数可以从包含范围引用变量。(之后的文章会详细讲解lambda表达式的相关操作)
def make_incrementor1(n):
    return lambdax:x+n
 
f=make_incrementor1(42)
 
print(f(1))
 
>>>
=========== RESTART:D:/python/pythonLearning/KeywordArguments.py ===========
43
>>>
(8) Function Annotations函数注解
首先是一个简单的例子
def f(ham:str,eggs:str='eggs2')->str:
  print("Annotations:",f.__annotations__)
  print("Arguments:",ham,eggs)
  return str(ham)+' and ' +eggs
s=f(‘abc’)
print(s)
结果:
>>>
=========== RESTART:D:/python/pythonLearning/KeywordArguments.py ===========
Annotations: {'ham': <class 'str'>,'eggs': <class 'str'>, 'return': <class 'str'>}
Arguments: abc eggs2
abc and eggs2
>>> 
 
函数注解是完全可选的元数据信息,它告诉人们这个函数返回的类型应该是什么类型,函数形参应该是什么类型。但是传入其他类型可能会报错,当然,这并非绝对,只不过是开发者给调用者的一个建议。上面的例子中,即使实参传入数字也是不会报错的。(这段在python3.6帮助文档上的说明看得我很头疼,比较乱,我领会精神写的)
 
注解存储在 __annotations__ 属性中,以字典的形式存在,对其他部分的功能没有任何影响。
参数注释:在参数名称的后面加一个冒号,其后是期待实参的类型。
返回值注解:函数的参数列表外面,冒号前面,加上一个 –>,后面是期待返回的类型。

下面关于Python的文章您也可能喜欢,不妨参考下:

《Python核心编程 第二版》.(Wesley J. Chun ).[高清PDF中文版] 下载见 http://www.linuxidc.com/Linux/2013-06/85425.htm

零基础如何入门Python http://www.linuxidc.com/Linux/2016-10/136485.htm

Ubuntu 14.04安装Python 3.3.5  http://www.linuxidc.com/Linux/2014-05/101481.htm

CentOS 6.5 脚本自动化装 Python2.6升级2.7  http://www.linuxidc.com/Linux/2017-02/140406.htm

CentOS上源码安装Python3.4  http://www.linuxidc.com/Linux/2015-01/111870.htm

Ubuntu 14.04下Python数据处理环境搭建  http://www.linuxidc.com/Linux/2017-01/139568.htm

Python Paramiko模块安装和使用  http://www.linuxidc.com/Linux/2017-01/139973.htm

《Python开发技术详解》.( 周伟,宗杰).[高清PDF扫描版+随书视频+代码] http://www.linuxidc.com/Linux/2013-11/92693.htm

在CentOS 6.5上安装Python2.7  http://www.linuxidc.com/Linux/2016-10/136206.htm

Ubuntu 14.04 LTS下编译安装Open Babel和Python语言绑定 http://www.linuxidc.com/Linux/2017-01/139569.htm

Python常见数据结构整理  http://www.linuxidc.com/Linux/2017-02/140613.htm

本文永久更新链接地址http://www.linuxidc.com/Linux/2017-04/142559.htm

linux
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数

       

评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款