手机版
你好,游客 登录 注册
背景:
阅读新闻

Apple发布Core ML,为Apple设备提供了机器学习功能

[日期:2017-06-23] 来源:infoq.com  作者:Roland Meertens ,译者 Rays [字体: ]

Apple在WWDC 2017大会上发布了一种使用机器学习的方式,以及一种开发人员在自身应用中添加机器学习的方式。

Apple新发布的机器学习API称为Core ML,允许开发人员将机器学习模型集成到App中,App运行于采用iOS、macOS、watchOS和tvOS的Apple设备上。由于模型驻留在设备上,因此数据不会离开设备。

Core ML提供了应用开发人员可用的多种API调用,无需开发人员在App中额外添加任何模型。例如,它所提供的计算机视觉算法包括了面部识别和追踪、特征点检测和事件识别。开发人员也可调用Core ML做自然语言分析,例如实现对电子邮件、文本和Web页面的分析。自然语言处理API调用包括了语言检测、标记化(Tokenization)、词性标注(POS tagging)抽取和命名实体识别等。

开发人员也可以设计并使用自己的机器学习模型。Core ML支持超过30层的深度神经网络,也支持其他一些机器学习方法,例如SVM和线性模型。在设备上可以使用CPU和GPU,这为在Apple设备上运行强大的算法提供了很大的空间。

Apple提供了一些预先训练好的模型,开发人员可以下载它们到自己的App中。在Apple开发者网站上提供的一个模型可检测205种图像场景(例如候机楼或卧室)。另外还提供了三种模型,可用于检测图像中的对象。开发人员也可以使用Apple提供的转换工具,将一些已有的模型转换为Core ML格式。该工具支持的机器学习工具包括:Keras(使用Tensorflow作为后端)、Caffe、Scikit-learn、libsvm和XGBoost。但是它不支持将已有的Tensorflow模型导入Core ML中,这在用于Android的Tensorflow Lite上是支持的。

对于那些想在自身App中添加人工智能的开发人员,可以访问Core Ml的官方文档

查看英文原文: Apple Announces Core ML: Machine Learning Capabilities on Apple Devices

本文永久更新链接地址http://www.linuxidc.com/Linux/2017-06/145105.htm

linux
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数

       

评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款